Name: Woods			Grading Quarter:1	Week Beginning:$8 / 15 / 23$	
Sch	ol Yea		Subject: AP Calculus AB		
3 $\frac{3}{0}$ $\frac{2}{2}$ $\stackrel{2}{1}$	Notes:	No school			Academic Standards:
$\begin{aligned} & \text {-1 } \\ & \stackrel{1}{0} \\ & 0 \\ & \stackrel{0}{\otimes} \end{aligned}$	Notes:	Objective: Students will show mastery of the Chapter 1 concepts in the chapter review. Lesson Overview: Use review questions from the end of the chapter in the textbook to play "trashketball" review game.			Academic Standards: AP Calculus AB 1.9 Connecting Multiple Representations of Limits 2.C Identify a re-expression of mathematical information presented in a given representation.
	Notes:	Objective: Students will show mastery of the Chapter 1 concepts in the chapter assessment. Lesson Overview: Chapter 1 Exam			Academic Standards: Academic Standards: AP Calculus AB 1.9 Connecting Multiple Representations of Limits 2.C Identify a re-expression of mathematical information presented in a given representation.
$\begin{aligned} & \text { 군 } \\ & \stackrel{1}{N} \\ & \stackrel{0}{2} \\ & \stackrel{2}{2} \end{aligned}$	Notes:	Objective: Students will create a difference quotient to represent the slope of a curve. Lesson Overview: Notes: "Big picture" concept of what a derivative is and two ways to write one: a difference quotient in terms of a small horizontal distance h and a difference quotient between two x-values. Students work in partners to simplify difference quotients before trying book examples independently.			Academic Standards: AP Calculus AB 2.2 Defining the Derivative of a Function and Using Derivative Notation 1.D Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

$\begin{aligned} & \text { 끌. } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{2}{2} \end{aligned}$	Notes:	Objective: Students will create a difference quotient to represent the slope of a curve. Lesson Overview: Use Desmos.com to practice sketching derivatives for various basic functions (constant, linear, quadratic, and basic trig). Students will not need to calculate a derivative at this stage. Focus on "big picture" understanding of derivatives.	Academic Standards: AP Calculus AB 2.2 Defining the Derivative of a Function and Using Derivative Notation 1.D Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

